Cave diving

Cave diving is a type of technical diving in which specialized equipment is used to enable the exploration of caves which are at least partially filled with water. In the United Kingdom it is an extension of the more common sport of caving, and in the United States an extension of the more common sport of SCUBA diving. Compared to caving and SCUBA diving, there are relatively few practitioners of cave diving. This is due in part to the specialized equipment (such as rebreathers, diver propulsion vehicles and dry suits) and skill sets required, and in part because of the high potential risks, including decompression sickness and drowning.

Despite these risks, water-filled caves attract SCUBA divers, cavers, and speleologists due to their often unexplored nature, and present divers with a technical diving challenge. Underwater caves have a wide range of physical features, and can contain fauna not found elsewhere.

Contents

Hazards

Cave diving is one of the most challenging and potentially dangerous kinds of diving or caving and presents many hazards. Cave diving is a form of penetration diving, meaning that in an emergency a diver cannot swim vertically to the surface due to the cave's ceilings, and so must swim the entire way back out in case of emergency. The underwater navigation through the cave system may be difficult and exit routes may be at considerable distance, requiring the diver to have sufficient breathing gas to make the journey. The dive may also be deep, resulting in potential deep diving risks.

Visibility can vary from nearly unlimited to low, or non-existent, and can go from one extreme to the other in a single dive. While a less-intensive kind of diving called cavern diving does not take divers beyond the reach of natural light (and typically no deeper than 100 ft, and penetration not further than 200 ft), true cave diving can involve penetrations of many thousands of feet, well beyond the reach of sunlight. The level of darkness experienced creates an environment impossible to see in without an artificial form of light. Caves often contain sand, mud, clay, silt, or other sediment that can further reduce underwater visibility in seconds when stirred up.

Caves can carry strong water currents. Most caves emerge on the surface as either springs or siphons. Springs have out flowing currents, where water is coming up out of the Earth and flowing out across the land's surface. Siphons have in-flowing currents where, for example, an above-ground river is going underground. Some caves are complex and have some tunnels with out-flowing currents, and other tunnels with in-flowing currents. If currents are not properly managed, they can cause serious problems for the diver.

Cave diving has been perceived [1] as one of the more deadly sports in the world. This perception is arguable because the vast majority of divers who have lost their lives in caves have either not undergone specialized training or have had inadequate equipment for the environment.[1] Cave divers have suggested that cave diving is in fact statistically much safer than recreational diving due to the much larger barriers imposed by experience, training, and equipment cost.[1]

There is no reliable worldwide database listing all cave diving fatalities. Such fractional statistics as are available, however, suggest that very few divers have ever died while following accepted protocols and while using equipment configurations recognized as acceptable by the cave diving community.[1] In the very rare cases of exceptions to this rule there have typically been unusual circumstances.[1]

Safety

Most cave divers recognize five general rules or contributing factors for safe cave diving, which were popularized, adapted and became generally accepted from Sheck Exley's 1977 publication Basic Cave Diving: A Blueprint for Survival.[1] In this book, Exley included accounts of actual cave diving accidents, and followed each one with a breakdown of what factors contributed to the accident. Despite the uniqueness of any individual accident, Exley found that at least one of a small number of major factors contributed to each one. This technique for breaking down accident reports and finding common causes among them is now called Accident Analysis, and is taught in introductory cave diving courses. Exley outlined a number of these resulting cave diving rules, but today these five are the most recognized:

These five rules may be remembered with the mnemonic The Good Divers Are Living, the first letter of each word referring to the first letter of the corresponding rule. An alternative mnemonic taught in the United States is Thank Goodness All Divers Live, requiring a rearrangement of the rules.

In recent years new contributing factors were considered after reviewing accidents involving solo diving, diving with incapable dive partners, video or photography in caves, complex cave dives and cave diving in large groups. With the establishment of technical diving, the usage of mixed gases—such as trimix for bottom gas, and nitrox and oxygen for decompression—reduces the margin for error. Accident analysis informs us that breathing the wrong gas at the wrong depth and/or not analyzing the breathing gas properly has led to cave diving accidents.

Cave diving requires a wide variety of very specialized techniques. Divers who do not adhere strictly to these techniques, as well as equipment specifications, greatly increase the amount of risk they undertake. The cave diving community works hard to educate the public on the risks they assume when they enter water-filled caves. Warning signs with the likenesses of the Grim Reaper have been placed just inside the openings of many popular caves in the US, and others have been placed in nearby parking lots and local dive shops.

Many cave diving sites around the world contain basins, which are also popular open-water diving sites. These sites try to minimize the risk of untrained divers being tempted to venture inside the cave systems. With the support of the cave diving community, many of these sites enforce a "no-lights rule" for divers who lack cave training—they may not carry any lights into the water with them. It is easy to venture into an underwater cave with a light and not realize how far away from the entrance (and daylight) one has swum; this rule is based on the theory that, without a light, divers will not venture beyond daylight.

Training

Cave diving training includes equipment selection and configuration, guideline protocols and techniques, gas management protocols, communication techniques, propulsion techniques, emergency management protocols, and psychological education. As cave diver training stresses the importance of safety it does point out cave conservation ethics as well. Most training programs contain various stages of certification and education.

International differences

The cave diving community is a global one, partly due to the highly specialised nature with the resulting small numbers of practitioners at a local level.

However, cave diving practice can differ markedly by locality. One such difference is the use of a floating polypropylene guide line. Most cave divers in the U.S. balk at the use of any sort of floating guide line, 6 mm polypropylene line is the norm in UK precisely because it does float - the line is regularly anchored to stones, lead weights, or whatever is needed and the floating keeps it clear of mud and silt. In Europe, thinner yet slightly buoyant line is typical. Cave diving practices in some localities may be different than those in other parts of the world because those caves require specialized techniques. It is always recommended that individuals contact someone familiar with a cave before venturing inside a cave.

Regularity in signs and warnings may also differ around the world. For example, warnings signs are rare in the UK.

History

Jacques-Yves Cousteau, co-inventor of the first SCUBA equipment, was both the world's first SCUBA diver and the world's first SCUBA cave diver. However, many cave divers penetrated caves prior to the advent of SCUBA with surface supplied UBA through the use of umbilical hoses and compressors. SCUBA diving in all its forms, including cave diving, has advanced in earnest since he introduced the aqua-Lung in 1943.

UK history

The Cave Diving Group (CDG) was established informally in the United Kingdom in 1935 to organise training and equipment for the exploration of flooded caves in the Mendip Hills of Somerset. The first dive was made by Jack Sheppard on 4 October 1936,[4] using a home-made drysuit surface fed from a modified bicycle pump, which allowed Shepard to pass Sump 1 of Swildon's Hole. Swildon's is an upstream feeder to the Wookey Hole resurgence system. The difficulty of access to the sump in Swildon's prompted operations to move to the resurgence, and the larger cave there allowed use of conventional "hard hat" equipment which was secured from the Siebe Gorman company. The left photograph on the standard diving dress page will give some indication of the scale of operations this entailed. In UK cave diving, the term "Sherpa" is used without a drop of irony for the people who carry the diver's gear although recently this has gone out of fashion; support is now more normally used, and before the development of SCUBA equipment such undertakings could be monumental operations.

Diving in the spacious third chamber of Wookey Hole led to a rapid series of advances, each of which was dignified by being given a successive number, until an air surface was reached at what is now known as "Chamber 9." Some of these dives were broadcast live on BBC radio, which must have been a quite surreal experience for both diver and audience.

The number of sites where standard diving dress could be used is clearly limited and there was little further progress before the outbreak of World War II reduced the caving community considerably. However, the rapid development of underwater warfare through the war made a lot of surplus equipment available. The CDG re-formed in 1946 and progress was rapid. Typical equipment at this time was a frogman rubber diving suit for insulation (water temperature in the UK is typically 4 °C), an oxygen diving cylinder, soda lime absorbent canister and counter-lung comprising a rebreather air system and an "AFLOLAUN," meaning "Apparatus For Laying Out Line And Underwater Navigation." The AFLOLAUN consisted of lights, line-reel, compass, notebook (for the survey), batteries, and more.

Progress was typically by "bottom walking", as this was considered less dangerous than swimming (note the absence of buoyancy controls). The use of oxygen put a depth limit on the dive, which was considerably mitigated by the extended dive duration. This was the normal diving equipment and methods until approximately 1960 when new techniques using wetsuits (which provide both insulation and buoyancy compensation), twin open-circuit SCUBA air systems the development of side mounting cylinders, helmet-mounted lights and free-swimming with fins. The increasing capacity and pressure rating of air bottles also extended dive durations.[5]

U.S. History

In the 1970s, cave diving greatly increased in popularity among divers in the United States. However, there were very few experienced cave divers and almost no formal classes to handle the surge in interest. The result was a large number of divers trying to cave dive without any formal training. This resulted in more than 100 fatalities over the course of the decade. The state of Florida came close to banning SCUBA diving around the cave entrances. The cave diving organizations responded to the problem by creating training programs and certifying instructors, in addition to other measures to try to prevent these fatalities. This included posting signs, adding no-lights rules, and other enforcements.

In the United States, Sheck Exley was a pioneering cave diver who first explored many Florida underwater cave systems, and many other underwater cave systems throughout the US and the world. On February 6, 1974, Exley became the first chairman of the Cave Diving Section of the National Speleological Society.[6]

Since the 1980s, cave diving education has greatly reduced diver fatalities, and it is now rare for an agency trained diver to perish in an underwater cave. Also in the 1980s, refinements were made to the equipment used for cave diving, most importantly better lights with smaller batteries. In the 1990s, cave diving equipment configurations became more standardized, due mostly to the adaptation and popularization of the "Hogarthian Rig", developed by several North Florida cave divers (named in honor of William "Hogarth" Main) which promotes equipment choices that "keep it simple and streamlined".

Today, the cave community is most focused on training, exploration, public awareness, and cave conservation.

Documentary films made by Wesley C. Skiles and Jill Heinerth have contributed to the increasing popularity of cave diving in the early 21st century.

Cave diving venues

Grand Bahama Island

The caves and caverns of Grand Bahama contain an immense underwater cavern with a vast flooded labyrinth of caverns, caves and submerged tunnels that honeycomb the entire island of Grand Bahama and the surrounding sea bed. The inland caves are not abundant with life, but do contain creatures living in the caves other than the migrating gray snappers. Residents of these caves include a type of blind cave fish and remipedia that don't pose any threat to cave divers.

The caves in the Bahamas were formed during the last ice age. With much of the Earth's water held in the form of glacial ice, the sea level fell hundreds of feet, leaving most of the Bahama banks, which are now covered in water, high and dry. Rain falling on the most porous limestone slowly filtered down to sea level forming a lens where it contacted the denser salt water of the ocean permeating the spongy lime stone. The water at the interface was acidic enough to dissolve away the limestone and form the caves. Then, as more ice formed and the sea level dropped even further, the caves became dry and rainwater dripping through the ceiling over thousands of years created the incredible crystal forests of stalagmites which now decorate the caves. Finally, when the ice melted and the sea level rose, the caves were reclaimed by the sea.

Central and Northern Florida, U.S.

The largest and most active cave diving community in the United States is in north-central Florida. The North Floridan Aquifer expels groundwater through numerous first-magnitude springs, each providing an entrance to the aquifer's labyrinthine cave system. These high-flow springs have resulted in Florida cave divers developing special techniques for exploring them, since some have such strong currents that it is impossible to swim against them.

The longest known underwater cave system in the USA, The Leon Sinks cave system, near Tallahassee, Florida, has multiple interconnected sinks and springs spanning two counties (Leon & Wakulla).[7] One main resurgence of the system, Wakulla Springs, is explored exclusively by a very successful and pioneering project called the Woodville Karst Plain Project (WKPP), although other individuals and groups like the US Deep Cave Diving Team, have explored portions of Wakulla Springs in the past.

One of the deepest known underwater caves in the USA is Weeki Wachee Spring. Due to its strong outflow, divers have had limited success penetrating this first magnitude spring until 2007, when drought conditions eased the out-flowing water allowing team divers from Karst Underwater Research to penetrate to depths of 400 ft (120 m)[8]

The Florida caves are formed from geologically young limestone with moderate porosity. The absence of speleothem decorations which can only form in air filled caves, indicates that the flooded Florida caves have a single genetic phase origin, having remained water filled even during past low sea levels. In plan form, the caves are relatively linear with a limited number of side passages allowing for most of the guidelines to be simple paths with few permanent tees. It is common practice for cave divers in Florida to joint a main line with a secondary line using a jump reel when exploring side passages, in order to maintain a continuous guideline to the surface.

Yucatan Peninsula, Mexico

While there is great potential for cave diving in the continental karst throughout Mexico, the vast majority of cave diving in Mexico occurs in the Yucatán Peninsula. While there are thousands of deep pit cenotes throughout the Yucatán Peninsula including in the states of Yucatán and Campeche, the extensive sub-horizontal flooded cave networks for which the peninsula is known are essentially limited to a 10 km wide strip of the Caribbean coastline in the state of Quintana Roo extending south from Cancun to the Tulum Municipality and the Sian Ka'an Biosphere Reserve, although some short segments of underwater cave have been explored on the north-west coast (Yucatán State).

In the Yucatán Peninsula, any surface opening where groundwater can be reached is called cenote, which is a Spanish form of the Maya word d’zonot. The cave systems formed as normal caves underwater, but upper sections drained becoming air filled during past low sea levels. During this vadose, or air filled state, abundant speleothem deposits formed. The caves and the vadose speleothem were subsequently reflooded and became hydraulically reactivated as rising sea levels also raised the water table. These caves are therefore polygenetic, having experienced more than one cycle of formation below the water table. Polygenetic coastal cave systems with underwater speleothem are globally common, with notable examples being on the Balearic Islands (Mallorca, Menorca) of Spain, the islands of the Bahamas, Bermuda, Cuba, and many more.

As with all cave speleothems, the underwater speleothems in the Yucatán Peninsula are fragile. If a diver accidentally breaks off a stalactite from the ceiling or other speleothem formation, it will not reform as long as the cave is underwater so active cave conservation diving techniques are paramount.

In plan form, the Quintana Roo caves are extremely complex with anastomotic interconnected passages. When cave diving through the caves, the pathways then appear to have many offshoots and junctions, requiring careful navigation with permanent tees or the implementation of jumps in the guideline.

The beginning of the 1980s brought the first cave divers from the U.S. to the Yucatán Peninsula, Quintana Roo to explore cenotes such as Carwash, Naharon and Maya Blue, but also to central Mexico where resurgence rivers such as Rio Mante, sinkholes such as Zacaton were documented.

In the Yucatán, the 1980s ended with the discoveries of the Dos Ojos and Nohoch Nah Chich cave systems which lead into a long ongoing competition of which exploration team had the longest underwater cave system in the world at the time, with both teams vying for first place.

The beginning of the 1990s led into the discovery of underwater caves such as Aereolito on the island of Cozumel, ultimately leading to the 5th biggest underwater cave in the world.

By the mid 1990s a push into the central Yucatán Peninsula by dedicated deep cave explorers discovered a large number of deep sinkholes, or pit cenotes, such as Sabak Ha, Utzil and deep caves such as Chacdzinikche, Dzibilchaltun, Karkirixche that have been explored and mapped. To this day these deep caves of the central Yucatán remain largely unexplored due to the sheer number of cenotes found in the State of Yucatán, as well as the depth involved that can be only tackled using technical diving techniques or rebreathers. In the end of the last millennium closed circuit rebreather (CCR) cave diving techniques were employed in order to explore these deep water filled caves.

By the end of the 1990s, "The Pit" in the Dos Ojos cave system located 5.8 km from the Caribbean coast had been discovered, and it is presently (2008) 119 m deep. At that time, technical diving and rebreather equipment and techniques became common place.

By the turn of the millennium the longest underwater cave system at that time, Ox Bel Ha was established by cave diving explorers whose combined efforts and information helped join segments of previously explored caves. The use of hand held GPS technology and aerial and satellite images for reconnaissance during exploration became common. New technology such as rebreathers and diver propulsion vehicles (DPVs) became available and were utilized for longer penetration dives. As of October 2010, Ox Bel Ha includes 182 km of underwater passage (See QRSS for current statistics).

Active exploration continues in the new millennium. Most cave diving exploration is now conducted on the basis of "mini projects" lasting 1 – 7 days, and occurring many times a year, and these may include daily commutes from home to jungle dive base camps located within 1 hour from road access.

Starting in 2006 a number of large previously explored and mapped cave systems have been connected utilizing sidemount cave diving techniques and many times no-mount cave diving techniques in order to pass through these tight cave passages, creating the largest connected underwater cave system on the planet, Sac Actun, which presently has a length extent of 215 km (See QRSS for current statistics).

Many cave maps have been published by the Quintana Roo Speleological Survey (QRSS).

United Kingdom

UK requirements are generally that all people wishing to take up cave diving must be competent cavers before they start cave diving. This is primarily because most British cave dives are at the far end of dry caves. There are individuals that begin cave diving directly from the recreational diving, but they represent a minority in the UK, and represent only a few percent of the Cave Diving Group (CDG).

Australian cave diving and the CDAA

Australia has many spectacular water filled caves and sinkholes, but unlike the UK, most Australian cave divers come from a general ocean-diving background. The "air-clear" water of the sinkholes and caves can be found in the Mount Gambier area of south-eastern Australia. The first cave and sinkhole dives here took place in the very late 1950s, and until the mid 1980s divers generally used single diving cylinders and homemade torches, and reels, resulting in most of their explorations being limited.

A series of tragedies between 1969 and 1973 in which 11 divers drowned (including a triple and a quadruple fatality) in just four karst features - "Kilsbys Hole", "Piccaninnie Ponds", "Death Cave" and "The Shaft" - created much public comment and led to the formation of the Cave Divers Association of Australia (CDAA) Inc. in September 1973. As a consequence of the CDAA's assessment programs, divers are rated at various levels, and today they comprise Deep Cavern, Cave, and Advanced Cave. Five further deaths have occurred since 1974; two died at Piccaninnie Ponds in 1983, one person died at Kilsbys Hole in 2010[9], and two people died in separate incidents at Tank Cave in 2011 including noted cave diver Agnes Milowka.

During the 1980s the Nullarbor Plain was recognized as a major cave-diving area, with one cave, Cocklebiddy, being explored for more than 6 kilometers, involving the use of large sleds to which were attached numerous diving cylinders and other paraphernalia, and which were then laboriously pushed through the cave by the divers. In more recent years divers have been utilizing compact diver-towing powered scooters, but the dive is still technically extremely challenging. A number of other very significant caves have also been discovered during the past 10 years or so; the 10+ (Lineal) kilometre long Tank Cave near Mount Gambier, other very large features on the Nullarbor and adjacent Roe Plain as well as a number of specific sites elsewhere, and nowadays the cave diving community utilizes many techniques, equipment and standards from the U.S. and elsewhere.

The CDAA is one of a number of organisations responsible for the administration of cave diving certification in Australia. Mixed-gas and rebreather technologies can now be used in many sites. All cave diving in the Mount Gambier area as well as at some New South Wales sites and the Nullarbor requires divers to be members of the CDAA, whether in the capacity of a visitor or a trained and assessed member.

Brazil

In Brazil there is cavern diving in Chapada da Diamantina, in Bahia state; Bonito, in Mato Grosso do Sul state; and Mariana, where there is also cave diving (visiting Mina da Passagem), in Minas Gerais state. For cave diving in Mariana a cave diver certification will be required.

Sardinia Italy

In the north west of Sardinia, close to Porto Conte bay, Alghero territory, there is the most important cave diving site in the Mediterranean Sea. Thanks to the huge limestone cliffs of Capo Caccia and Punta Giglio there are more than 300 caves above and below water, with about 30 large, and many smaller, underwater sea caves. The Nereo Cave is the most important and it is considered also the largest in the Mediterranean Sea. On the east side of Sardinia there are many underwater cave systems starting from the Gennargentu Mountains, with underwater rivers which arrive at the sea by different, lengthy routes. Here one of the deepest fresh water caves exits at more than 110 m (360 ft) depth.

See also

References

  1. ^ a b c d e f g h i j k l m Sheck Exley (1977). Basic Cave Diving: A Blueprint for Survival. National Speleological Society Cave Diving Section. ISBN 9994663372. 
  2. ^ a b c Devos, Fred; Le Maillot, Chris; Riordan, Daniel (2004). "Introduction to Guideline Procedures - Part 2: Methods". DIRquest (Global Underwater Explorers) 5 (4). http://www.gue.com/files/page_images/expeditions/Mexico/guideline2.pdf. Retrieved 2009-04-05. 
  3. ^ Bozanic, JE (1997). "AAUS Standards for Scientific Diving Operations in Cave and Cavern Environments: A Proposal.". In: SF Norton (ed). Diving for Science...1997. Proceedings of the American Academy of Underwater Sciences (17th Annual Scientific Diving Symposium). http://archive.rubicon-foundation.org/4634. Retrieved 2008-07-05. 
  4. ^ "Jack Sheppard". Cave Diving Group. http://www.cavedivinggroup.org.uk/Articles/Sheppard.html. Retrieved 2007-12-29. 
  5. ^ Farr, Martyn (1991). The Darkness Beckons. London: Diadem Books. ISBN 0939748320. 
  6. ^ Staff. "Cave Diving Section of the National Speleological Society was founded". cavedivinghistory.com. http://www.cavedivinghistory.com/forums/showthread.php?t=84. Retrieved 2009-06-01. 
  7. ^ Kernagis DN, McKinlay C, Kincaid TR (2008). "Dive Logistics of the Turner to Wakulla Cave Traverse". In: Brueggeman P, Pollock NW, eds. Diving for Science 2008. Proceedings of the American Academy of Underwater Sciences 27th Symposium. Dauphin Island, AL: AAUS;. http://archive.rubicon-foundation.org/8011. Retrieved 2009-06-01. 
  8. ^ Neill, Logan; Anderson, Joel (2009-04-20). "Cave divers explore deepest parts of Weeki Wachee Springs". St. Petersburg Times. http://www.tampabay.com/news/humaninterest/article993502.ece. Retrieved 2009-06-01. 
  9. ^ http://www.wavesncaves.com/main/fatalities

Sources

External links